

Analysis 1 6 December 2023

Warm-up: see next slide

Find f'or df/dx. A) $x^2 - 5x + 27$ J) $x \cos(x)$ K) $5 - x^3$ B) $\frac{1}{2} - x$ L) $(x^2 + 1)(x^{10} - 3)$ C) cx^3 M) $\frac{2}{\sqrt{x}}$ Ć) $8 \sin(x)$ D) $\frac{6x - 7}{x^3}$ N) $\frac{-2}{x^5}$ E) e^{x} O) $x^{-1/9}$ F) $x^2 - \cos(x)$ G) $6x^{-2}$ P) \sqrt{x} H) 1238 Q) $7x^2 + 5 + 3x^{-1}$ $1) \quad \sqrt[3]{\chi}$

Differentiate the functions whose letters are the start of your first or last name.

R) $x^4 - x^3 + x^2 - x + 1$

S) $5 + \sqrt{5}$ Ś) 7 + 2x $S) 7 \cdot 2x$ T) 7^{2x} U) $3\sin(x) + 2\cos(x)$ V) $\cos(x) + \sqrt{x}$ W) $\cos(x) \cdot \sqrt{x}$ X) $\cos(x) \cdot \sin(x)$ Y) $\sqrt{x^5}$ Z) $6x^{-2} + 5x^2$ \dot{Z}) $100x^{99}$

Differentiate the functions whose letter					
	_ (do it again				
A)	2x-5	" J)	$\cos(x)$		
B)	-1	K)	$-3x^2$		
C)	$3cx^2$	L)	$(x^2 + 1)$		
Ć)	$8\cos(x)$		$= 12x^{11}$		
D)	21 - 12x	M)	$\frac{1}{x^{3/2}}$		
,	x^4		10		
E)	e^{x}	N)	$\overline{x^6}$		
F)	$2x + \sin(x)$	O)	$\frac{-1}{0}x^{-10}$		
G)	$-12x^{-3}$	P)	$\frac{1}{-3/4}$		
H)	0	•)	4		
	1 _2/3	Q)	14x - 1		
1)	$\frac{1}{3}\chi^{2/3}$	R)	$4x^3 - 3$		

ers are the start of your first or last name. $-x\sin(x)$ S) 0 **Ś**) 2 $(10x^9 + 2x(x^{10} - 3) \text{ s}) 14$ $+10x^9-6x$ T) $2\ln(7) \cdot 7^{2x}$ U) $3\cos(x) - 2\sin(x)$ V) $-\sin(x) + \frac{1}{2}x^{-1/2}$ W) $\frac{1}{2}x^{-1/2}\cos(x) - \sin(x)\sqrt{x}$ 0/9 X) $\cos(x)^2 - \sin(x)^2$ Y) $\frac{5}{2}x^{3/2}$ $3x^{-2}$ Z) $-12x^{-3} + 10x$ $3x^2 + 2x - 1$ Ż) $100x^{99}$

Answers: A) 2 B) () C) 6cxD) $-8\sin(x)$ $\acute{C}) \frac{36x - 84}{x^5}$ E) e^x F) $2 + \cos(x)$ G) $36x^{-4}$ H) 0 (1) $\frac{-2}{9}x^{-5/3}$

 $J) -2 \sin(t)$ K) -6xL) $132x^{10}$ M) $\frac{3}{2x^{5/2}}$ N) $\frac{-60}{x^7}$ O) $\frac{10}{81}x^{-19/9}$ P) $\frac{-3}{16}x^{-7/4}$ Q) $14 + 6x^{-3}$ R) $12x^2 - 6x + 2$

$$(x) - x\cos(x) + 90x^8 - 6$$

S) 0 **Ś**) 0 **Ş**) 0 T) $4(\ln 7)^2 \cdot 7^{2x}$ U) $-3\sin(x) - 2\cos(x)$ V) $-\cos(x) - \frac{1}{4}x^{-3/2}$ W) $-\frac{1}{4}x^{-3/2}\cos(x) - x^{-1/2}\sin(x)$ $-x^{1/2}\cos(x)$ X) $-4\sin(x)\cos(x)$ Y) $\frac{15}{4}x^{1/2}$ Z) $36x^{-4} + 10$ Ż) 9900x⁹⁸

Monotonicity

- If f' > 0 then f is "increasing",
- If f' < 0 then f is "decreasing".
- A point where f' is zero or doesn't exist is a "critical point".

<u>Concavity</u>

- If f'' > 0 then f is "concave up",
- If f'' < 0 then f is "concave down".
- A point where f'' changes sign is an "inflection point".

"Find the absolute extremes of f(x) on the closed interval [a, b]." HOW TO DO IT: Compare values of f at CPs and endpoints. 0

"Find the local extremes of f(x)." "Find and classify the critical points of f(x)." HOW TO DO IT:

1st Deriv. Test: Use values of f' in between CPs, and far left, and far right. 0 OR

 2^{nd} Deriv. Text: Use values of f'' at each CP. 0

For $f(x) = \frac{1}{3}x^3 - 4x$,

f is negative

f'lells us

f is increasing

-4

f" lells us

-3

For $f(x) = \frac{1}{3}x^3 - 4x$,

f is negative

f'lells us

f" lells us

f is increasing f' is positive

-4

f" is negative

-3

Task: Classify the critical points of $f(x) = x^4 - \frac{64}{3}x^3 + 154x^2 - 392x$

and list its inflection points.

Possible hints:

 $x = 0, x = \frac{28}{3}$ $x^4 - \frac{64}{3}x^3 + 154x^2 - 392x = 0$ \rightarrow $4x^3 - 64x^2 + 308x - 392 = 0$ x = 2, x = 7 \rightarrow $x = \frac{11}{3}, x = 7$ \rightarrow $12x^2 - 128x + 308 = 0$ $x = \frac{16}{2}$ 24x - 128 = 0 \rightarrow

We have several rules that can help us find derivatives of functions (without doing limits).

Individual functions:

- Deriv. of constant is zero
- Powers
- Sine and cosine
- Sector Exponential
- Logarithm
 hew loday

Combining functions:

- Sum
- Product
- Quotient ← new today
- Composition
 hew today

Summary of rules: \circ (c)' = 0 $(x^{c})' = c x^{c-1}$ • $(\sin x)' = \cos x$ • (cf)' = c(f')(f+g)' = f'+g'We do not need to use f and g as the names of the functions, and we do not need to use x as the variable. • If $u = 10x^3 + 1$ then $\frac{du}{dx} = 30x^2$. • If $u = t \cos(t)$ then $\frac{du}{dt} = \cos(t) - t \sin(t)$. • If $y = \sin(v)$ then $\frac{du}{dv} = \cos(v)$. • If $f = u^2$ then $\frac{\mathrm{d}f}{\mathrm{d}u} = 2u$.

 \circ $(c^{x})' = c^{x} \ln(c)$ $\circ \ (\cos x)' = -\sin x$ \circ $(\ln x)' = ???$ • (fg)' = fg' + f'g

We have seen how to do derivatives of f(x) + g(x) and f(x) - g(x)and $f(x) \cdot g(x)$. We will look at $\frac{f(x)}{g(x)}$ later.

f(x) and g(x) is the function f(g(x)), which can also be written as $f \circ g$.

Examples of compositions:

• $sin(x^2)$

 $/\cos(x)$

The "Chain Rule" will let us find derivatives of all of these functions!

There is one other important way to combine functions: the composition of

$\ln(x^3 + 8)$ $e^{(-x^2)}$ $(5 + \cos(x))^3$ • $\ln(\sin(e^x))$

that we can already differentiate with other methods:

$\frac{d}{dx} \left[(10x^3 + 1)^2 \right] = ?$

We will answer this three different ways: • By expanding $(10x^3 + 1)^2 = 100x^6 + 20x^3 + 1$. • By the PRODUCT RULE because $(10x^3 + 1)^2 = (10x^3 + 1) \cdot (10x^3 + 1)$.

- By the CHAIN RULE (new)! 0

Before learning the general formula for $\frac{d}{dx}[f(g(x))]$, let's look at a composition

$\frac{d}{dr} \left[(10x^3 + 1)^2 \right] = \frac{2(10x^3 + 1)(30x^2)}{2(10x^3 + 1)(30x^2)}$

We do not need to use f and g as the names of the functions, and we do not need to use x as the variable.

• If $u = 10x^3 + 1$ then $\frac{du}{dx} = 30x^2$. • If $u = t\cos(t)$ then $\frac{du}{dt} = \cos(t) - t\sin(t)$.

• If $y = \sin(v)$ then $\frac{du}{dv} = \cos(v)$.

If $f = u^2$ then $\frac{dy}{du} = 2u$.

Chain Rule dx du dx

Although $\frac{df}{dx}$ is not really a fraction, the idea of canceling out parts of fractions is a nice way to remember one of the official Chain Rule formulas.

You do *not* need to know *any* of these formulas.

You only need to be able to use the Chain Rule to find derivatives of functions.

Task 1: Differentiate $(sin(x))^4$.

$If f(x) = x^4$, then $f'(x) = 4x^3$ $f(w) = 4w^3$ $f'(sin(x)) = 4sin(x)^3$

We will also need $g'(x) = \cos(x)$, the deriv. of $\sin(x)$. According the formula in the box, the derivative of $f(g(x)) = sin(x)^4$ is $4sin(x)^3 \cdot cos(x)$.

Chain Rule $\frac{\mathrm{d}}{\mathrm{d}x} \left[f(g(x)) \right] = f'(g(x)) \cdot g'(x)$

 $f(3) = 4(3)^3 = 108$

For the example $(sin(x))^4$, we call sin(x) the "inside function" and we call $()^4$ the "outside function".

Task 2: Find the derivative of $(4x^2 - 8x + 9)^{50}$.

Task 3: Find the derivative of $sin(4x^2 - 8x + 9)$.

Task 4: Find the derivative of $x^3 e^x + \sin(x^2)$. Use the SUM RULE first. sin(x) is the • Then use the PRODUCT RULE for $\frac{d}{dx} \left[x^3 e^x \right]$. "outside function" And use the CHAIN RULE for $\frac{d}{dx} \left[\sin(x^2) \right]$. (derivative of x3ex) + (deriv. of sin(x2)) = $(x^3) \cdot \frac{d}{dx} [e^x] + \frac{d}{dx} [x^3] \cdot (e^x) + \cos(x^2) \cdot 2x$ $= \chi^3 e^{\chi} + 3 \chi^2 e^{\chi} + 2\chi \cos(\chi^2)$ derivative of outside (x+3)x²e^x + 2xcos(x²) or function

x² is the "inside function"

> derivative of inside function

inside function

Task 5a: Differentiate $(3x - 7)(2x + 1)^5$. Use the PRODUCT RULE first. • Then use the CHAIN RULE for $\frac{d}{dx} \left[(2x+1)^5 \right]$.

 $(3x-7)(deriv, of (2x+1)) + (3)(2x+1)^{5}$

 $= (3x - 7)(5(2x + 1) + (2) + (3)(2x + 1)^{5}$ = (2x + 1) + (2(3x - 7) + 3(2x + 1))= (2x + 1) + (36x - 67)

Task 5b: Differentiate $(3x - 7)(2x + 1)^{-1}$. Use the PRODUCT RULE first. • Then use the CHAIN RULE for $\frac{d}{dx} \left[(2x+1)^{-1} \right]$.

 $(3x-7)(-(2x+1)^{-2})(2) + (3)(2x+1)^{-1}$

With some algebra, this is also $\frac{17}{(2x+1)^2}$.

This is one way to differentiate $\frac{3x-7}{2x+1}$. There is also "the quotient rule".

The Quotient Rule $\frac{d}{dx} \left| \frac{f}{g} \right| = \frac{gf' - fg'}{g^2}$ can be helpful, but you can always use Product and Chain instead, like we did for $\frac{3x-7}{2x+1} = (3x-7)(2x+1)^{-1}$.

Example: Find the derivative of tan(x). • You should know that $tan(x) = \frac{sin(x)}{cos(x)}$.

Simplify $e^{\ln(x)}$. This is exactly x.

What is $\frac{d}{dx} [e^{\ln(x)}]$? Since this is $\frac{d}{dx} [x]$, it must be 1. According to the Chain Rule, it's a That means $x \cdot \frac{d}{dx} [\ln(x)] = 1$.

Dividing both sides of that equation by x gives $\frac{d}{dx} \left[\ln(x) \right] = \frac{1}{x}$.

• According to the Chain Rule, it's also $e^{\ln(x)} \cdot \frac{d}{dx} [\ln(x)]$, which is $x \cdot \frac{d}{dx} [\ln(x)]$.

Derivalive formulas

f(x)

f'(x)

хp	р х р-1
e ^x	e ^x
sin(x)	$\cos(x)$
$\cos(x)$	$-\sin(x)$
ln(x)	1 / x

You should memorize these!

a^x	$a^x \ln(a)$	
tan(x)	$sec(x)^2$	
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	

Maybe these too.

f(x)

f''(x)

хp	р х р-1
e ^x	e ^x
sin(x)	$\cos(x)$
$\cos(x)$	$-\sin(x)$
ln(x)	1 / x

Derivalive formalas Constant Multiple: (cf)' = cf'Sum Rule: (f + g)' = f' + g'**Product Rule:** (fg)' = fg' + f'g**Quotient Rule:** $\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}$ Chain Rule:

 $(f(g))' = f'(g) \cdot g'$