Analysis 1 6 December 2023

Warm-up: see next slide

Find f^{\prime} or $d f / d x$.
Differentiate the functions whose letters are the start of your first or last name.
A) $x^{2}-5 x+27$
J) $x \cos (x)$
S) $5+\sqrt{5}$
B) $\frac{1}{2}-x$
K) $5-x^{3}$
S) $7+2 x$
C) $c x^{3}$
L) $\left(x^{2}+1\right)\left(x^{10}-3\right)$
S) $7 \cdot 2 x$
C) $8 \sin (x)$
D) $\frac{6 x-7}{x^{3}}$
E) e^{x}
M) $\frac{2}{\sqrt{x}}$
T) $7^{2 x}$
U) $3 \sin (x)+2 \cos (x)$
N) $\frac{-2}{x^{5}}$
F) $x^{2}-\cos (x)$
O) $x^{-1 / 9}$
G) $6 x^{-2}$
H) 1238
P) $\sqrt{\sqrt{x}}$
V) $\cos (x)+\sqrt{x}$
W) $\cos (x) \cdot \sqrt{x}$
X) $\cos (x) \cdot \sin (x)$
l) $\sqrt[3]{x}$
Q) $7 x^{2}+5+3 x^{-1}$
Y) $\sqrt{x^{5}}$
R) $x^{4}-x^{3}+x^{2}-x+1$
Z) $6 x^{-2}+5 x^{2}$
Ż) $100 x^{99}$

Differentiate the functions whose letters are the start of your first or last name.
A) $2 x-5$ (do it again!)
J) $\cos (x)-x \sin (x)$
S) 0
B) -1
K) $-3 x^{2}$
S) 2
C) $3 c x^{2}$
L) $\left(x^{2}+1\right) 10 x^{9}+2 x\left(x^{10}-3\right)$ S) 14
$=12 x^{11}+10 x^{9}-6 x$
T) $2 \ln (7) \cdot 7^{2 x}$
Cf) $8 \cos (x)$
D) $\frac{21-12 x}{x^{4}}$
E) e^{x}
M) $\frac{-1}{x^{3 / 2}}$
N) $\frac{10}{x^{6}}$
F) $2 x+\sin (x)$
O) $\frac{-1}{9} x^{-10 / 9}$
U) $3 \cos (x)-2 \sin (x)$
V) $-\sin (x)+\frac{1}{2} x^{-1 / 2}$
W) $\frac{1}{2} x^{-1 / 2} \cos (x)-\sin (x) \sqrt{x}$
G) $-12 x^{-3}$
P) $\frac{1}{4} x^{-3 / 4}$
X) $\cos (x)^{2}-\sin (x)^{2}$
H) 0
Q) $14 x-3 x^{-2}$
Y) $\frac{5}{2} x^{3 / 2}$
I) $\frac{1}{3} x^{-2 / 3}$
R) $4 x^{3}-3 x^{2}+2 x-1$
Z) $-12 x^{-3}+10 x$
Zn) $100 x^{99}$

Answers:
A) 2
B) 0
C) $6 c x$
D) $-8 \sin (x)$
C) $\frac{36 x-84}{x^{5}}$
E) e^{x}
F) $2+\cos (x)$
G) $36 x^{-4}$
H) 0
I) $\frac{-2}{9} x^{-5 / 3}$
J) $-2 \sin (x)-x \cos (x) \quad$ S) 0
K) $-6 x$
S) 0
L) $132 x^{10}+90 x^{8}-6$
M) $\frac{3}{2 x^{5 / 2}}$
N) $\frac{-60}{x^{7}}$
O) $\frac{10}{81} x^{-19 / 9}$
P) $\frac{-3}{16} x^{-7 / 4}$
Q) $14+6 x^{-3}$
R) $12 x^{2}-6 x+2$

Ş) 0
T) $4(\ln 7)^{2} \cdot 7^{2 x}$
U) $-3 \sin (x)-2 \cos (x)$
V) $-\cos (x)-\frac{1}{4} x^{-3 / 2}$
W) $-\frac{1}{4} x^{-3 / 2} \cos (x)-x^{-1 / 2} \sin (x)$
$-x^{1 / 2} \cos (x)$
X) $-4 \sin (x) \cos (x)$
Y) $\frac{15}{4} x^{1 / 2}$
Z) $36 x^{-4}+10$

Ż) $9900 x^{98}$

Seeing f^{\prime} and $f^{\prime \prime}$ in graphs

Monotonicity

- If $f^{\prime}>0$ then f is "increasing",
- If $f^{\prime}<0$ then f is "decreasing".
- A point where f^{\prime} is zero or doesn't exist is a "critical point".

Concavity

- If $f^{\prime \prime}>0$ then f is "concave up",
- If f " <0 then f is "concave down".
- A point where $f^{\prime \prime}$ changes sign is an "inflection point".

$\operatorname{Min} / \max$ lasks

"Find the absolute extremes of $f(x)$ on the closed interval $[a, b]$." HOW TO DO IT:

- Compare values of f at CPs and endpoints.
"Find the local extremes of $f(x)$."
"Find and classify the critical points of $f(x)$." HOW TO DO IT:
- $1^{\text {st }}$ Deriv. Test: Use values of f^{\prime} in between CPs, and far left, and far right. OR
- $2^{\text {nd }}$ Deriv. Text: Use values of $f^{\prime \prime}$ at each CP.

For $f(x)=\frac{1}{3} x^{3}-4 x$,

f' cells us
 $f^{\prime \prime}$ Cells us

Task: Classify the critical points of

$$
f(x)=x^{4}-\frac{64}{3} x^{3}+154 x^{2}-392 x
$$

and list its inflection points.

Possible hints:

$$
\begin{array}{rlr}
x^{4}-\frac{64}{3} x^{3}+154 x^{2}-392 x=0 & \rightarrow & x=0, x=\frac{28}{3} \\
4 x^{3}-64 x^{2}+308 x-392=0 & \rightarrow & x=2, x=7 \\
12 x^{2}-128 x+308=0 & \rightarrow & x=\frac{11}{3}, x=7 \\
24 x-128=0 & \rightarrow & x=\frac{16}{3}
\end{array}
$$

Derivalive Rules
We have several rules that can help us find derivatives of functions (without doing limits).

Individual functions:

- Deriv. of constant is zero
- Powers
- Sine and cosine
- Exponential
- Logarithm \leftarrow new today

Combining functions:

- Sum
- Product
- Quotient \leftarrow new today
- Composition \leftarrow new today

Summary of rules:

- $(c)^{\prime}=0$
- $\left(x^{c}\right)^{\prime}=c x^{c-1}$
- $\left(c^{x}\right)^{\prime}=c^{x} \ln (c)$
- $(\sin x)^{\prime}=\cos x$
- $(c f)^{\prime}=c\left(f^{\prime}\right)$
- $(\cos x)^{\prime}=-\sin x$
- $(\ln x)^{\prime}=$???
- $(f+g)^{\prime}=f^{\prime}+g^{\prime}$
- $(f g)^{\prime}=f g^{\prime}+f^{\prime} g$

We do not need to use f and g as the names of the functions, and we do not need to use x as the variable.

- If $u=10 x^{3}+1$ then $\frac{\mathrm{d} u}{\mathrm{~d} x}=30 x^{2}$.
- If $u=t \cos (t)$ then $\frac{\mathrm{d} u}{\mathrm{~d} t}=\cos (t)-t \sin (t)$.
- If $y=\sin (v)$ then $\frac{\mathrm{d} u}{\mathrm{~d} v}=\cos (v)$.
- If $f=u^{2}$ then $\frac{\mathrm{d} f}{\mathrm{~d} u}=2 u$.

We have seen how to do derivatives of $f(x)+g(x)$ and $f(x)-g(x)$ and $f(x) \cdot g(x)$. We will look at $\frac{f(x)}{g(x)}$ later.

There is one other important way to combine functions: the composition of $f(x)$ and $g(x)$ is the function $f(g(x))$, which can also be written as $f \circ g$.

Examples of compositions:

- $\sin \left(x^{2}\right)$
- $\sqrt{\cos (x)}$

$$
\begin{array}{ll}
\text { - } \ln \left(x^{3}+8\right) & \cdot(5+\cos (x))^{3} \\
\text { - } e^{\left(-x^{2}\right)} & \cdot \ln \left(\sin \left(e^{x}\right)\right)
\end{array}
$$

The "Chain Rule" will let us find derivatives of all of these functions!

Before learning the general formula for $\frac{\mathrm{d}}{\mathrm{d} x}[f(g(x))]$, let's look at a composition that we can already differentiate with other methods:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[\left(10 x^{3}+1\right)^{2}\right]=?
$$

We will answer this three different ways:

- By expanding $\left(10 x^{3}+1\right)^{2}=100 x^{6}+20 x^{3}+1$.
- By the PRODUCT RULE because $\left(10 x^{3}+1\right)^{2}=\left(10 x^{3}+1\right) \cdot\left(10 x^{3}+1\right)$.
- By the CHAIN RULE (new)!

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[\left(10 x^{3}+1\right)^{2}\right]=\overbrace{2\left(10 x^{3}+1\right)\left(30 x^{2}\right)}^{2 u=\frac{d f}{d u}} \overbrace{\frac{d u}{d x}}^{\frac{d}{2}}
$$

We do not need to use f and g as the names of the functions, and we do not need to use x as the variable.

- If $u=10 x^{3}+1$ then $\frac{\mathrm{d} u}{\mathrm{~d} x}=30 x^{2}$.
- If $u=t \cos (t)$ then $\frac{\mathrm{d} u}{\mathrm{~d} t}=\cos (t)-t \sin (t)$.
- If $y=\sin (v)$ then $\frac{\mathrm{d} u}{\mathrm{~d} v}=\cos (v)$.
- If $f=u^{2}$ then $\frac{\mathrm{d} f}{\mathrm{~d} u}=2 u$.

Chain Rule

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}=\frac{\mathrm{d} f}{\mathrm{~d} u} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x}
$$

Although $\frac{\mathrm{d} f}{\mathrm{~d} x}$ is not really a fraction, the idea of canceling out parts of fractions is a nice way to remember one of the official Chain Rule formulas.

Chain Rule

$$
\begin{aligned}
& \text { - } \frac{\mathrm{d} f}{\mathrm{~d} x}=\frac{\mathrm{d} f}{\mathrm{~d} g} \cdot \frac{\mathrm{~d} g}{\mathrm{~d} x} \\
& \text { - } \frac{\mathrm{d}}{\mathrm{~d} x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& \text { - } \frac{\mathrm{d}}{\mathrm{~d} x}[f \circ g]=f^{\prime}(g) \cdot g^{\prime}
\end{aligned}
$$

You do not need to know any of these formulas.

You only need to be able to use the Chain Rule to find derivatives of functions.

Task 1: Differentiate $(\sin (x))^{4}$.
Chain Rule

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

If $f(x)=x^{4}$, then $f^{\prime}(x)=4 x^{3}$

$$
f^{\prime}(3)=4(3)^{3}=108
$$

$$
f^{\prime}(\omega)=4 \omega^{3}
$$

$$
f^{\prime}(\sin (x))=4 \sin (x)^{3}
$$

We will also need $g^{\prime}(x)=\cos (x)$, the deriv. of $\sin (x)$.
According the formula in the box, the derivative of $f(g(x))=\sin (x)^{4}$ is $4 \sin (x)^{3} \cdot \cos (x)$.

For the example $(\sin (x))^{4}$, we call $\sin (x)$ the "inside function" and we call ($)^{4}$ the "outside function".

Task 2: Find the derivative of $\left(4 x^{2}-8 x+9\right)^{50}$.

Task 3: Find the derivative of $\sin \left(4 x^{2}-8 x+9\right)$.

Task 4: Find the derivative of $x^{3} e^{x}+\sin \left(x^{2}\right)$.

- Use the SUM RULE first.
- Then use the PRODUCT RULE for $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{3} e^{x}\right]$.
- And use the CHAIN RULE for $\frac{\mathrm{d}}{\mathrm{d} x}\left[\sin \left(x^{2}\right)\right]$. "outside "inside function" function"

$$
\begin{aligned}
& \text { (derivative of } \left.x^{3} e^{x}\right)+\left(\text { deriv. of } \sin \left(x^{2}\right)\right) \\
& =\left(x^{3}\right) \cdot \frac{d}{d x}\left[e^{x}\right]+\frac{d}{d x}\left[x^{3}\right] \cdot\left(e^{x}\right)+\cos \left(x^{2}\right) \cdot 2 x \\
& =x^{3} e^{x}+3 x^{2} e^{x}+2 x \cos \left(x^{2}\right)
\end{aligned} \underbrace{\begin{array}{c}
\text { derive } \\
\text { of inside }
\end{array}}_{\text {derivative }} \text { function } \quad \text { inside }
$$

Task 5a: Differentiate $(3 x-7)(2 x+1)^{5}$.

- Use the PRODUCT RULE first.
- Then use the CHAIN RULE for $\frac{\mathrm{d}}{\mathrm{d} x}\left[(2 x+1)^{5}\right]$.

$$
\begin{aligned}
& (3 x-7)\left(\text { deriv. of }(2 x+1)^{5}\right)+(3)(2 x+1)^{5} \\
& =(3 x-7)\left(5(2 x+1)^{4} \cdot 2\right)+(3)(2 x+1)^{5} \\
& =(2 x+1)^{4}(2(3 x-7)+3(2 x+1)) \\
& =(2 x+1)^{4}(36 x-67)
\end{aligned}
$$

Task 5b: Differentiate $(3 x-7)(2 x+1)^{-1}$.

- Use the PRODUCT RULE first.
- Then use the CHAIN RULE for $\frac{\mathrm{d}}{\mathrm{d} x}\left[(2 x+1)^{-1}\right]$.

$$
(3 x-7)\left(-(2 x+1)^{-2}\right)(2)+(3)(2 x+1)^{-1}
$$

With some algebra, this is also $\frac{17}{(2 x+1)^{2}}$.
This is one way to differentiate $\frac{3 x-7}{2 x+1}$. There is also "the quotient rule".

The Quotient Rule $\frac{\mathrm{d}}{\mathrm{d} x}\left[\frac{f}{g}\right]=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$ can be helpful, but you can always use Product and Chain instead, like we did for $\frac{3 x-7}{2 x+1}=(3 x-7)(2 x+1)^{-1}$.

Example: Find the derivative of $\tan (x)$.

- You should know that $\tan (x)=\frac{\sin (x)}{\cos (x)}$.

Simplify $e^{\ln (x)}$.

- This is exactly x.

What is $\frac{\mathrm{d}}{\mathrm{d} x}\left[e^{\ln (x)}\right]$?

- Since this is $\frac{\mathrm{d}}{\mathrm{d} x}[x]$, it must be 1 .
- According to the Chain Rule, it's also $e^{\ln (x)} \cdot \frac{\mathrm{d}}{\mathrm{d} x}[\ln (x)]$, which is $x \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}[\ln (x)]$.
- That means $x \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}[\ln (x)]=1$.
- Dividing both sides of that equation by x gives $\frac{\mathrm{d}}{\mathrm{d} x}[\ln (x)]=\frac{1}{x}$.

Derivalive formulas

$f(x)$	$f^{\prime}(x)$	You Should
x^{p}	$p x^{p-1}$	e^{x}
e^{x}	$\cos (x)$	$\tan (x)$
$\sin (x)$	$-\sin (x)$	\sqrt{x}
$\cos (x)$	$1 / x$	$\frac{1}{2 \sqrt{x}}$
$\ln (x)$	Maybe these too.	

Derivalive formulas

$f(x)$	$f^{\prime}(x)$
x^{p}	$p x^{p-1}$
e^{x}	e^{x}
$\sin (x)$	$\cos (x)$
$\cos (x)$	$-\sin (x)$
$\ln (x)$	$1 / x$

Constant Multiple: $(c f)^{\prime}=c f^{\prime}$
Sum Rule: $(f+g)^{\prime}=f^{\prime}+g^{\prime}$
Product Rule:

$$
(f g)^{\prime}=f g^{\prime}+f^{\prime} g
$$

Quotient Rule:

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}
$$

Chain Rule:

$$
(f(g))^{\prime}=f^{\prime}(g) \cdot g^{\prime}
$$

